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Rate coding in a chain of pulse-coupled oscillators
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The input-output relation of a chain of pulse-coupled oscillators is examined. The oscillators capture the
essential aspect of the dynamics of pacemaker neurons. Inputs consist of pacemaker, and noisy trains imping-
ing upon the first unit in the chain. The response of the chain is defined as the spike train emitted by the last
unit. We observe two important phenomena in the response of the chain for a given input train, whether
pacemaker or noisy. First, the mean output rate of the chain is equal to the mean input rate in the range of input
rate in which one input pulse corresponds to one output spike without phase létkingjternation Second,
for the same input range, the output interspike intervals tend to the average of the input interpulse intervals in
a long chain of oscillators. This behavior contrasts with the fact that the response of a single unit depends on
both input rate and pattern. We show that the response of the chain is reproduced by the phase transition curve
which represents the phase shift due to a single isolated pulse stimulus. This analysis reveals that the averaging
of the output interspike intervals is due to the geometrical aspect of the phase transition curve. This geometrical
aspect causes the dependence of the response of a single unit on input [B11@68-651X99)11009-2

PACS numbd(s): 87.19.La, 87.17.Aa

[. INTRODUCTION how, in a chain ofn oscillators, the range of output spike
parameters in tha— 1th order neuron affects the activity of

Trains of action potentials emitted by neurons constitutenth order neuron.
one of the main carriers of information in nervous systems To investigate the response of the chain of oscillators, we
[1,2]. Comprehensive experiment&B,4] and theoretical follow the analysis of a single neuron by Perkelal.[1] and
[5-9] works have clearly established that synapses perforrifohn et al. [11] by examining the response of chains of os-
signal transduction based upon the pattern, and hence ttélators to both pacemaker and stochastic pulse trains.
timing of the incoming input trains. In this sense, the sub- This paper is organized as follows. Section Il presents the
strate for temporal coding is present at the level of singlenodel for the units and the chain. We consider a chain com-
synapses. In a seminal work, Segurda|.[10] investigated ~Posed of a variant of the radial isochron clo@dC), which
whether physiologically significant differences in output oc-has been shown to be an accurate model for biological oscil-
cur in neurons subjected to a synaptic input that has a givelgtors and in particular for Segundo’s preparati@?7,9.
mean frequency but whose higher order statistics are systenthe response of the chains to various types of periodic and
atically varied. They showed that inputs with the same fre10iSy input trains are presented in Sec. Ill. It is shown that
quency but with different patterns evoked different outputthe response of the chain depends on both the input rate and
rates. Their resu'ts Showed that not 0n|y the mean frequencﬁ[)eff|c|ent. Of variation. Moreover, we ShOW that the Sen§ltlv-
of spikes but also the higher order statistics can be informally to the input pattern decreases along the chain for input
tion carriers in nervous systems. rates within a specific range. Thus, in this regime, the re-

In another work, Perkest al.investigated the response of SPonse of a long chain is essentially determined by the input
a single oscillator to two kinds of input pulse traifis], — rate. An analy5|s of this result in terms of the response toa
namely, a pacemaker pulse train and a Poisson pulse trafingle pulse is also presented. Finally, the results are dis-
(i.e., whose sequence of timings forms a Poisson processcussed in Sec. IV.

They showed that small changes in the rate of synaptic input Il. CHAIN MODEL

or in the input variance can markedly alter the output pattern ) ) )

of a single neuro{1]. They suggested the possibility of I_n this section, we mtroo_luce a pacemaker neuron model
highly selective filtering of synaptic inputs in networks of Which captures the essential aspects of the dynamics of a
neurons. Kohnet al. examined the dependence of the re-pacemaker neuron. Next we describe the phase transition
sponse of a neuron on the input pattern by changing thEUrve. This curve enableg us to analyze the dynamics of the
degree of variability of input pulse traifd1]. They used Pacemaker neuron by using the knowledge of the response to
input pulse trains following a stochastic process leading té Single pulse. Finally, we present the chain of the oscilla-
variable input intervals. They reported that the output patterfiors.
strongly depended on the input variability.

This work examines how the sensitivity of single units to
input patterns is reflected on the response of a chain of os- The dynamics of the pacemaker neuron model is deter-
cillators. We study whether the sensitivity to the input pat-mined by the following equations in polar coordinates:
tern present at the level of a single unit is also apparent when
such units operate sequentially, the input of each unit being r=Kr(1-r?), 6=I5if S, 6=, if 6eF,
the output of the previous one. More precisely, we study (1)

A. Pacemaker neuron model
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where, §=[0.5,0.64) F=[0,1)—S, |5=3/20] »=129/10,r  point (xe y) before thenth pulse stimulus, we can obtain
eR*,0eS! (the unit circle, andK is a positive constant 7,41, the time-phase just before tmer 1th pulse stimulus,
[Fig. 1(a)]. The state point moves slowly and rapidly with according to

angular velocitied s and| - when @ is in S and F, respec-

tively. We call this model asymmetric modified radial iso- Tn1=[P(7) +1n] (mod D=F(7,,1,), 4
chron clock(AMRIC).

The unit circle(i.e.,r=1) is a stable limit cycle of Egs.
(1), with period 1, denoted by [Fig. 1(a), left]. Trajectories
starting from any initial point in the phase plane, except th
origin, wind counterclockwise around the origin, and,tas
—o0, they approachy.

wherel,, is the time interval between theth andn+1th
pulses[7]. We refer to the mag(-,1):S!—S* as PTCH to
ejndicate its dependence on the input interval. For any arbi-
trary sequence of pulses, and for any initial time-phage
we can inductively compute the successive time-phésgs

The variableX=r cos# (the abscissa of the state point in using Eq. (4. For instance, 7,=®(7;)+11,73

Cartesian coordinatgsepresents the “membrane potential” = PLP(7y)l]+ l2, ... When k<q)(7”)+|"$k+l’. ex
of the AMRIC [Fig. 1(a), middle]. An output discharge is actly k output spikes occur between théh andn+ 1th input

defined as the state point crossing over the positive patt of PUIS€s13]. Thus, for any initial time-phase, and sequence of

axis. The time-phase of a poirton y, denoted byr(x), is input intervals{l,}, the PTC can be used to compute the

the time necessary for the state point to move fQTo X, response of th.e AMRIC without solving the system of dif-
wherlex0=(1 0) y pol ve fogymo x ferential equation$Eq. (1)]. We use this method to repro-

duce and to analyze the response of the chain of oscillators in
» Sec. Ill.
B. The phase transition curve For periodic pulse traind (=1,=--- =1,=|=constant),

A state point ony, perturbed by a single pulse stimulus of the sequence of time-phasés,} becomesr,=f(7,_1,!)
intensity A and duration zero, is displaced by the amoant = f?(7,_2,1)=f""*(7,1), where 7, is the initial time-
in the direction ofX. Such a stimulation displaces a point phase. If the sequende,} satisfiesr,, =7, and 7,# 71,2
on vy to a pointx’ with lower “membrane potential,” be- <n=p, {7,} is called a periodic orbit with periog. If the
causeX andX’, the abscissas ofandx’ in Cartesian coor- periodic orbit satisfie$df '/ d7(7o)|=11_,|of, /a7(7))|<1,
dinates, satisf)X’ =X+ A. Here, for simplicity, we assume it is stable.p:IimMHmEnMﬂAn/M, where A,=®(7,) +1
that K>0, so that a state point perturbed fromrapidly
converges back to it. Thus, following the perturbation, the
state point moves instantaneously framto a pointy on the
limit cycle [Fig. 1(a), left]. The following equation gives the
relation between the time-phasesxoandy(x,y € y):

—7,, is called rotation number.

If the period of{7,} is p, the rotation numbep becomes
g/p with adequateg (p andq are not always incommensu-
rate). We call this responsp:q phase locking. In this way,
fixed points(periodic orbits with period oneand periodic
(y)=®[r(x)]=g L W{g[7(x)]}) (mod2), orbits of the RTO— corresppnd to' different periodic dis- .

charges, and vice-versa. This relation between the geometri-

cal properties of the PTC and the discharge pattern of the

where ) .
pacemaker neuron models plays an important role in our
v 1»[ | sin2mp o analysis.
= —1tan -
2 A+ cos 20 C. The chain model
and The chain model consists of unidirectionally coupled
units [Fig. 1(b)]. The units are AMRICs and the couplings
B JT(X) d q
0=g(7r)= . d—sa[x(s)] S. 1
The graph of® is the phase transition curi®TC) [Fig. z
1(a), right] of AMRIC. It represents the phase shift due to a
single isolated pulse stimuluig,12)]. ¢ . )

An important characteristic of the PTC of the AMRIC is
that for = within [0.039,0.97), it can be approximated by a
straight line with a positive slopa smaller than 1, for ex-

(b)
ample,a=0.677 forA= —0.5. The “linear” part of the PTC
is approximated as follows: 4@_@4@4@_0
FIG. 1. (a) Left column: the trajectory of the AMRIC in the

for 7€[0.039,0.97. €©)] phase plane; abscissa and ordinate: state varixbdexl Y, respec-

tively. Middle column: corresponding membrane potential wave

form; abscissa: time in arbitrary unit, ordinaté; the membrane
The PTC can be used to describe the response of thgstential of AMRIC in arbitrary unit. Right column: phase transi-

pacemaker neuron models to an arbitrary sequence of idefion curve (PTC). (b) Schematic diagram of a chain of pulse-
tical pulses. Indeed, fronr,, the time-phase of the state coupled oscillators.

2

d(r)=ar+ (
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are pulsatile. The input to the chain is the pulse train re- (a) PTC
ceived by the first unit, while the input pulse train of tke ‘-2 Unit23,50,100_
+ 1th unit is the output spike train of theth unit. " ! o a0 i
In the absence of any external input, the first unit gener- §°‘8
ates a pacemaker train with natural perider 1. Thus, the £oe Unit
second unit is stimulated by a periodic pulse train with pe- §°'4
riod 1. When the input interpulse interval is 1, the AMRIC 02
exhibits 1:1 phase locking. Thus, in the steady state regime, % 2 3 4 5
the second unit also discharges regularly with a period of 1 (b)
[Fig. 2(a@)]. In this way, all units produce output spike trains o4 UNIT 1
with period 1 in the steady state. In the 1:1 phase locking 0.12
regime, the PTC of the AMRIC has a stable fixed paitit 01
=0.0386[Fig. 1(a), right]; that is, it receives input pulses at 008
a fixed time-phase* =0.0386. We choose this state as the ggi
initial condition of the chain model. ooz
To calculate the response of the chain model, we have o e
used two methods. One is a numerical simulation scheme AT RATE
that takes advantage of the analytical expression of the solu- 014 UNIT 2
tion to Eq.(1) (Appendix V), the other one is by iterating the 042
PTC according to Eq(4). We have obtained quantitative 04
agreement between the two methods. The figures illustrate 5008
the results obtained with the second method. The corre- 0.08
sponding figures computed with the first method are not pre- 0.04 m/l
sented because they are visually indistinguishable from those e
obtained with the second method. 0 narmre Y8
lIl. RESPONSE TO INPUT TRAINS 0.14 UNT2
012
In this section, we examine successively the response of 0.1
the chain model to pacemaker and noisy pulse trains, and g o008
clarify the dependence of the output of the chain on the vari- 008
ability of the input intervals. Finally, we discuss the relation o Lﬂw
between the behavior of the chain model and the geometrical e WM
aspect of the PTC. ° ' e VB
A. Response to pacemaker input 0.14 UNIT 50
We investigate the response of the chain model to pace- 0(:?
maker pulse trains. Figurg&@ shows the steady state mean 5008
output rate of the chain model as a function of the mean 0.08
input rate. This figure includes the response of the first, sec- 0.04
ond, third, 50th, and 100th units to a pacemaker pulse train o
delivered to the first unit. v e Y8
The plot of mean output rate of the first urite., one UNIT 100
single uni}, though globally decreasing, is interrupted by 0.14
wide ranges of input rate where an increase in inhibitory 012
input pulse rate accelerates the pacemaker (readoxical 0%;
acceleration[Fig. 2(@)]. In this region,p input intervals cor- 9’0_'06
respond toq output interspike intervals with fixed time- 0.04
phases, namelyp:g phase locking occurs. To consider the 0.02
relation between mean input rate and mean output rate of %7 2 & 4 s
p:q [ phase locking, we denote hlyn 1/ the input rate and NPUTRATE
by rou=a/(T1+To+- -+ +Tg) the mean output rate, where
{Tl,Tz, L. ,Tq} are the successive output intervalsgm FIG. 2. Response of chain of oscillators to pacemaker input by
phase locking region. Froffi;+To+ - - - +Tq=p|. we ob- using PTC.(a) Mean firing rate of the chain of oscillators, as a
tain function of mean input rate. Abscissa and ordinate: mean input rate
in spikes per unit time and mean output rate in spikes per unit time,
_ p— respectively(b) Standard deviation of the chain of oscillators, as a
rout:arin- ) function of mean input rate. Abscissas: mean input rate in spikes

per unit time; ordinates: standard deviation of interspike interval in
Thus, a line with slop@/q appears in th@:q phase locking arbitrary units. Response of simulated chain of oscillators also

region accounting for paradoxical acceleration.

shows the same response.
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Figure Za) shows that no matter what values the input (a) PTC

rate takes, the mean output rate of the first unit is always \W\//—
bounded: 0.&r,,<1.0. This, in turn, implies that the sec- Cv=0.01

ond unit receives an input train with mean rate within 0 and
1. Therefore, the mean output rate of this unit varies between

0.77<r,,=1.0. This range corresponds to 1:1 phase locking
region. Similarly, the mean output rate of all units beyond
the second one also varies within the 1:1 phase locking
range.

Thus, the overall behavior of the chain is determined by
the way an AMRIC responds to an input train with a rate
within the 1:1 phase locking range. We have previously re-
ported that within this range, the relatior<i (7,) +1,<2
holds except for special values of time phase and intervals
[13]. This implies that to one input pulse corresponds exactly
one output pulse, i.e., there is 1:1 alternation. At the level of
the chain, this property means that the mean output rate of all
units is the same as the input rate. This phenomenon ac-
counts for the fact that units 2, 3, 50, and 100 have all the
same output rate in Fig.(@, and that this common value
matches the discharge rate of the first unit for low input rates.
The difference between the firing rate of the first unit and
that of the others appears when the input rate increases, lead-
ing to discharge rates at the level of the first unit that are L T S M
below the 1:1 lockindor equivalently 1:1 alternation range INPUT RATE
Eventually, when the input rate becomes too largeg, ( 0.2(b)
>3.32), the first unit remains quiescent, and the second unit
acts like the entry to the chain which stabilizes into its initial
pattern with all units firing at the natural period. 501 s unit 2

While the upper panel in Fig.(d represented the aver- A "\ unit 100
aged response of the units within the chain, the lower panels A o }/\\
show how the variability of the interdischarge intervals i AN T AW
changes across the chain. The five panels in Rig. ghow, C 7 werm
from top to bottom, the standard deviation of interspike in- ) ) ) )
tervals of the first, second, third, 50th, and 100th units. Glo-__F!G- 3. Response of chain of oscillators foinput by using
bally, the standard deviation decreases unit by unit therebyTC-(@ Mean firing rate of the chain of oscillators, as a function of -
indicating that the firing becomes more pacemakerlike as on rﬁinalgzytnﬁfﬁ ’zzfchis;"‘;e n?sasn :Ir('gst r::eulgits?ilrlr(]is E?gnlflnigt'n:g'
mqve§ along the.Chain' Since t.he first pnit generates.a Per ottom, tHe CV ofy inpput are 0.01,%.1,1(1?) Standard déviation 0?
Odl(.: dlsc_harge with a Cohst_ant_lnterva! pnl_phas_e locking .chain of oscillators. Abscissa: mean input rate in spikes per unit
regions, |_ts standard deviation is zero n _th|s regime. For th_'%lme; ordinate: standard deviation of output inter-spike interval in
range of input rates, the standard deviation of the other ””'tﬁrbitrary unit. The CV ofy input is 0.1. Response of simulated
is also zero. This is because the output spike train from thepin of oscillators produces the same response.
first unit is a pacemaker spike train and such trains are trans-
mitted unaltered when they are in the 1:1 phase locking re- ) ) ) )
gion. from a Poisson input, the resulting train follows kté order

The standard deviation is also zero for all units wingn 7 procesg14]. We call this inputy input. Ask increases, the

>3.32 because the first unit is silent in this case. Outside of'©a" @nd standard deviation of input intervals increade as

the above two conditions, the standard deviation of the inter2d vk, respectively. Hence, the coefficient of variation

vals is different from 0. Notably, even when the first unit (CV), namely, the ratio of the standard deviation to the
generates a periodic spike train in tpeq phase locking Mean, decreases asykl In other words, the first ordey
region, withq=2, the corresponding standard deviation isPTOCess is a Poisson process and increasing the order of the

not zero because the intervals form a repetitive sequeno%rocess leads to more regular input trains. Thus, stimulation
composed ofj distinct values. with y processes with different orders provides a standard

method to analyze the influence of input variability on the
behavior of the chain.

The three panels in Fig.(& show the mean input rate

When all interpulse intervals are independent andversus the mean output rate of the 100th unit in a chain
identically distributed with probability density function stimulated byy processes with CVs of 0.01, 0.1, and 1
p exp(—px), we refer to the pulse train as a Poisson input(from top to bottom. The range of the output rate of the
because the timing of the events follows a Poisson processhain model is in the 1:1 phase locking region of a single
[14]. Moreover, if we pick up one pulse evekyinput pulses  unit since the mean output rate is restricted to this range for

L - ~4
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all units after the first one. Similar to the case of pacemaker (a) PTC (Pacemaker Input) (b) PTC (y Input)
inputs, high input rates effectively prevent the first unit from INPUT INEUT
firing, thereby leading to a period 1 firing in all subsequent
units. In the case of stochastic inputs this phenomenon oc-
curs at higher mean rates than for pacemaker forcing. This
shifting is due to the variability of the input intervals.

The preceding section established how for pacemaker in- e T e e me w0 e w0 o s wow
puts, the response of a long chain varies with the input pe- ORDER OF INPUT OFOER OF INTERVAL
riod. When the input has some variability, the locking re- s -
gions, characterized by the positive slopes in the figures
representing the relation between input and output rates, pro-
gressively disappear as the CV is increased. The smaller the
size of the locking region, the smaller the variability required
to smooth out the corresponding positive sldpég. 3a)].

2

[

=4
2

INPUT INTERVAL

@
8

)

o

od
o

OUTPUT INTERVAL

. . . 5000 600 700 800 900 1000 500 600 700 800 900 1000
This phenomenon implies that the mean output rate of the ORDER OF INPUT °“°E“3:;TZ“V‘L
chain depends not only on the mean input rate but also on the . NT2 4
input variability. This dependence is consistent with previous 12 R AR A

o

studies that examined the response of single Jfi#s11].

The main difference between the response of the chain
and that of a single unit appears at the level of the variability
of the interspike intervals. This is shown in FighBwhere L we % e
the standard deviations of the interdischarge intervals of ORDER OF INPUT ORDER OF INTERVAL
units one, two, three, fifty, and one hundred are represented. INT S WIS
For the first unit, the standard deviation presents valleys in

OUTPUT INTERVAL
o
o

OUTPUT INTERVAL

§o

o

regions of p:1 (noisy) phase lockings and humps g E“ Eoo M\ ™
phase locking withg=2. Similarly, the standard deviations 5 EM

of the other units are smoothed versions of the ones obtained  zes 30e

with pacemaker forcinflower panels in Fig. @)]. Further- e e e e e o s e w0 e oo
more, for the 50th and 100th units, they take on larger values ORDER OF INPUT ORDER OF INTERVAL

when the input is stochastic. Nevertheless, in the same way UNIT 50 UNIT 50
as for pacemaker inputs, the standard deviation decreases
along the chain, thereby indicating that the discharge trains
of the units become more regular and pacemaker like along

n
SRS

2

OUTPUT INTERVAL
o 0 o 9

OUTPUT INTERVAL
g0 © B & & o

the chain. 05
This phenomenon is further illustrated in Fig. 4, which 0
. . . . . 500 600 700 800 900 1000 0 600 700 800 900 1000
shows the time evolution of input interpulse intervals and ORDER OF INPUT ORDER OF INTERVAL
output inter-spike intervals of the first, second, third, 50th, UNIT 100 UNIT 100

N

and 100th units. Figuregd and 4b) show, respectively, the
responses to a pacemaker within the 1:2 phase locking region
and to ay input with mean rate equal to 1 and CV of 0.1.
The abscissas are the order of interval and the ordinates are
the interpulse or interspike intervals. Due to the input-output

relation of a single AMRIC, the output intervals of the first 0 nommormr 0 cenor e
unit are bounded within € T,<1.30. Those of the subse-
guent units are further restricted to £0,<1.30, which
corresponds to the 1:1 locking region. For both pacemak

o

O(lJJTPUT INTERVAL
o

OUTPUT INTERVAL

§o

FIG. 4. Basic plot of chain of oscillatoréa) Response of chain
e?f oscillators to pacemaker input by PT@®). Response of chain of

and stochastic inputs, the higher order units have a markeZpCH A0S 0y input by PTC. Abscissas: order of interpulse or
interspike interval in arbitrary units; ordinates: interpulse or inter-

lower variability than the first one. For the periodic input, spike interval in arbitrary units. The rate of pacemaker input is 2.1

units two anq three display alre.ad.y close to pacemakgr diﬁﬁ (a). The mean rate of input is 1.0 and the CV o¥ input is 0.1
charges, while for the stochastic input, the decrease in the (b).

variability is slower as some low level fluctuations still ap-
pear in the output train of unit 100. Figure 5 shows the pro-chastic. This remarkable averaging effect can serve as the
gressive monotonic decrease of the standard deviation as thesis for the computation of the mean output rate of the
unit number increases. Thus, in a long chain the output reehain from the response of a single unit. Indeed, as pointed
sembles pacemaker firing, with intervals displaying little out previously, the interdischarge intervals of the second unit
variability around their mean value. Therefore, the two char-of the chain lie within the 1:1 locking range. This property
acteristics of the input, namely, its mean rate and CV, aréolds for both pacemaker and stochastic inputs. Conse-
both encoded in the mean output rate. quently, the chain composed of units three and beyond is
When the input rate varies within the 1:1 locking region, stimulated by an input train whose rate is within the 1:1
our numerical results show that the mean output rate tends locking region. This, in turn, implies thdt) the output of a
the mean input rate, whether the input is pacemaker or stdeng chain is close to pacemaker spike train with interspike
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intervals displaying some small variability around their mean Equation(11) shows the decrease in the variance across a
value, and, furthermore, thét) this mean value is given by single unit. In a chain of lengtk, we have that the mean
the mean interspike interval of the second unit within theoutput interspike interval coincides with the mean input in-
chain. terpulse interval, while the variances satisfgT) = a*V(l).
Figure 4a) illustrates this phenomenon. The output of the Thus the output variance decreases to zero with the length of
first unit is formed by two interval¥; andT,, both of which  the chain. This reduction of the variability of the intervals
lie within the 1:1 locking region. The response of the chainaccounts for the averaging effect observed across the chain.
at the level of the 100th unit is a pacemaker firing with
period (T;+T,)/2. A similar regularization effect takes
place along the chain when the input is stochastic, as illus- IV. DISCUSSION
trated in Fig. 4b). Such averaging effects that take place g work examined how the sensitivity of single units to
along the chain constitute the main characteristic of its '”p“tTnput patterns is reflected on the response of the chain of
output response. The next paragraph shows how the progregsijiators. We analyzed the response of the chain to pace-
sive reduction of the variability of the intervals can be ac-payer input and stochastic input. The investigation revealed
counted for by the geometrical properties of the PTC. 5t the response of the chain depends on the input rate and
To understand the mechanisms underlying the averagingeficient of variation. However, the latter does not have a
effect, we consider the response of a single unit to an inpWjgnificant effect when the input rate remains within the 1:1
pulse train such that all the input intervals fall within the 1:1 phase locking range. Indeed, in this regime, the output inter-
phase locking region. Our previous study indicates that fogpike intervals tend to the average of input interpulse inter-
such inputs, the unit displays in general 1:1 alternation, thaf;|s in a long chain of oscillators. This property implies that
is, the AMRIC generates exactly one discharge for everype response of the chain is completely determined by the
input pulse[13]. Thus, thenth output interspike interval, oyt rate. In this sense, the response of a long chain con-
denoted byT,, is given by trasts with that of the first unit whose output depends both on
©6) the input rate and the input pattern. One consequence of this
behavior of a long chain, with potential functional implica-
where 7, and 7, , are the time phases of theth and @ tion, is that when the input rate is confined to the 1:1 locking
+1)th input pulses. Furthermore, in this regime, the dis-"€gime, the chain model performs rate coding., the infor-
charge phases occur mainly in the “linear” part of the PTC,Mation carrier is mean rateMore precisely, the mean output

To=lnt 7= Tni1s

so that we have rate is equal to the mean input rate. We analyzed the mecha-
nism underlying this averaging effect in terms of the geo-
The1=ar,+b+1, mod1l). (7) metrical properties of the PTC. This description of the re-

sponse of a long chain to an input with rate within the 1:1

Taking ensemble aVerageS over input tl‘ainS, we Obtain |ocking range Opened the Way for the ana|ysis Of the re-
_ — — sponse to other input signals. This extension hinged upon the
Th+1=a7ytb+1 mod1), (8)  observation that for a broad range of input intervals, the

_ _ _interdischarge intervals of a single unit lay within the 1:1

wherer, andl represent averages of the phase and the inpypcking range. This, in turn, implies that the output of a long

intervals. Lettingn—, we haver=ar+b+1, whereris  chain consists of élose t9 pacemaker discharge train with

the steady state average discharge phase. This final expresperiod equal to the mean output rate of the first unit. Thus,
sion yieldsr=1+b/1—a and T=1, whereT is the steady for a broad class of inputs, the response of the chain is com-
state average output interval. The above relation confirmpletely characterized by the mean discharge rate of the first
that the output rate coincides with the input rate. unit. This quantity, in turn, depends on the organization of

Using Egs.(6) and(7), we obtain the following relation: the locking regions in response to pacemaker inputs. In this
way, we established a link between the response characteris-

T,=(1—-a)r,—b. (99 tics of a single unit and that of a long chain. The similarity
From this relation we obtain that PTC
V(T =(1—a)2V(r,), (10) o

0.06

S.D.

whereV(T,) andV(r,) represent the variances of thig and
7,. Letting n—o, we find the following relation for the
steady state variance¢(T)=(1—a)?V(7). From Eq.(7), it 002 \\‘M
can be seen that(7)=V(l)/(1—a?). |

Thus, finally we obtain the following relation between the 0 N ¥ W™
variances of the input and output intervals:

0.04r,

FIG. 5. Standard deviation of output interspike interval in each
V(T)=aV(l), (11 unit of chain of oscillators by using PTC. Abscissa: unit number;
ordinate: standard deviation of output interspike interval in arbitrary
wherea = (1—a)?/1—a?. Sincea<1, we havex<<1, which  unit. The mean input rate and the CV gfinput are 1.0 and 0.1,
implies that the interval variance of the output is smaller thanespectively. Standard deviation calculated by a simulation of chain
that of the input. of oscillators shows the same resuilt.
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between the response of the pacemaker model, namely, tleensider the case that the first stimulus arrives before the
AMRIC and experimental recordings of living neurons next spike. Set the input pulse arrivestatandr(t’~) and
[1,11] suggests that our results could hold for chains of paceg(t ' ~) are the variables just before the stimulus, afid ™)

maker neurons. andé(t’ ") are the variables just after the stimulus. When the
stimulus arrives at’, the state point moves to the direction
V. SIMULATION METHOD of X axis by the amount of amplitude of the stimulisThen

’+ ’+ r+y __ ~—1 ’+
To get the output sequence, we use special simulatio® getr.(t ) and6(t""). Fronl 7(t'"")=g [6(t'")], the
method as follows. next spike occurs a@t=N-—7(t' 7). If the AMRIC get other

Let r(to), 6(to) be the initial values of AMRIC at=t,.  Stimulus before the timg we repeat the above procedure. If
If there is no stimulus, the next output spike occurs athere is no other stimulus, we get the occurrence time of next
t=to+N— 7(ts), whereN— 7(t,) is necessary time to the OUtput spike. In this way, we can get the sequence of output
next spike from the initial condition without input. Let us SPikes.
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