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Rate coding in a chain of pulse-coupled oscillators
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Toyonaka 560-8531, Osaka, Japan
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The input-output relation of a chain of pulse-coupled oscillators is examined. The oscillators capture the
essential aspect of the dynamics of pacemaker neurons. Inputs consist of pacemaker, and noisy trains imping-
ing upon the first unit in the chain. The response of the chain is defined as the spike train emitted by the last
unit. We observe two important phenomena in the response of the chain for a given input train, whether
pacemaker or noisy. First, the mean output rate of the chain is equal to the mean input rate in the range of input
rate in which one input pulse corresponds to one output spike without phase locking~1:1 alternation!. Second,
for the same input range, the output interspike intervals tend to the average of the input interpulse intervals in
a long chain of oscillators. This behavior contrasts with the fact that the response of a single unit depends on
both input rate and pattern. We show that the response of the chain is reproduced by the phase transition curve
which represents the phase shift due to a single isolated pulse stimulus. This analysis reveals that the averaging
of the output interspike intervals is due to the geometrical aspect of the phase transition curve. This geometrical
aspect causes the dependence of the response of a single unit on input pattern.@S1063-651X~99!11009-2#

PACS number~s!: 87.19.La, 87.17.Aa
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I. INTRODUCTION

Trains of action potentials emitted by neurons constit
one of the main carriers of information in nervous syste
@1,2#. Comprehensive experimental@3,4# and theoretical
@5–9# works have clearly established that synapses perf
signal transduction based upon the pattern, and hence
timing of the incoming input trains. In this sense, the su
strate for temporal coding is present at the level of sin
synapses. In a seminal work, Segundoet al. @10# investigated
whether physiologically significant differences in output o
cur in neurons subjected to a synaptic input that has a g
mean frequency but whose higher order statistics are sys
atically varied. They showed that inputs with the same f
quency but with different patterns evoked different outp
rates. Their results showed that not only the mean freque
of spikes but also the higher order statistics can be infor
tion carriers in nervous systems.

In another work, Perkelet al. investigated the response o
a single oscillator to two kinds of input pulse trains@1#,
namely, a pacemaker pulse train and a Poisson pulse
~i.e., whose sequence of timings forms a Poisson proce!.
They showed that small changes in the rate of synaptic in
or in the input variance can markedly alter the output patt
of a single neuron@1#. They suggested the possibility o
highly selective filtering of synaptic inputs in networks
neurons. Kohnet al. examined the dependence of the r
sponse of a neuron on the input pattern by changing
degree of variability of input pulse trains@11#. They used
input pulse trains following a stochastic process leading
variable input intervals. They reported that the output patt
strongly depended on the input variability.

This work examines how the sensitivity of single units
input patterns is reflected on the response of a chain of
cillators. We study whether the sensitivity to the input p
tern present at the level of a single unit is also apparent w
such units operate sequentially, the input of each unit be
the output of the previous one. More precisely, we stu
PRE 601063-651X/99/60~4!/4564~7!/$15.00
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how, in a chain ofn oscillators, the range of output spik
parameters in then21th order neuron affects the activity o
nth order neuron.

To investigate the response of the chain of oscillators,
follow the analysis of a single neuron by Perkelet al. @1# and
Kohn et al. @11# by examining the response of chains of o
cillators to both pacemaker and stochastic pulse trains.

This paper is organized as follows. Section II presents
model for the units and the chain. We consider a chain co
posed of a variant of the radial isochron clock~RIC!, which
has been shown to be an accurate model for biological os
lators and in particular for Segundo’s preparation@6,7,9#.
The response of the chains to various types of periodic
noisy input trains are presented in Sec. III. It is shown t
the response of the chain depends on both the input rate
coefficient of variation. Moreover, we show that the sensit
ity to the input pattern decreases along the chain for in
rates within a specific range. Thus, in this regime, the
sponse of a long chain is essentially determined by the in
rate. An analysis of this result in terms of the response t
single pulse is also presented. Finally, the results are
cussed in Sec. IV.

II. CHAIN MODEL

In this section, we introduce a pacemaker neuron mo
which captures the essential aspects of the dynamics
pacemaker neuron. Next we describe the phase trans
curve. This curve enables us to analyze the dynamics of
pacemaker neuron by using the knowledge of the respons
a single pulse. Finally, we present the chain of the osci
tors.

A. Pacemaker neuron model

The dynamics of the pacemaker neuron model is de
mined by the following equations in polar coordinates:

ṙ 5Kr ~12r 2!, u̇5 l S if uPS, u̇5 l F if uPF ,
~1!
4564 © 1999 The American Physical Society
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where,S5@0.5,0.64),F5@0,1)2S, l S53/20,l F5129/10, r
PR1,uPS1 ~the unit circle!, and K is a positive constan
@Fig. 1~a!#. The state point moves slowly and rapidly wi
angular velocitiesl S and l F when u is in S and F, respec-
tively. We call this model asymmetric modified radial is
chron clock~AMRIC!.

The unit circle~i.e., r 51) is a stable limit cycle of Eqs
~1!, with period 1, denoted byg @Fig. 1~a!, left#. Trajectories
starting from any initial point in the phase plane, except
origin, wind counterclockwise around the origin, and, at
→`, they approachg.

The variableX5r cosu ~the abscissa of the state point
Cartesian coordinates! represents the ‘‘membrane potentia
of the AMRIC @Fig. 1~a!, middle#. An output discharge is
defined as the state point crossing over the positive partX
axis. The time-phase of a pointx on g, denoted byt(x), is
the time necessary for the state point to move fromx0 to x,
wherex05(1,0).

B. The phase transition curve

A state point ong, perturbed by a single pulse stimulus
intensityA and duration zero, is displaced by the amounA
in the direction ofX. Such a stimulation displaces a pointx
on g to a pointx8 with lower ‘‘membrane potential,’’ be-
causeX andX8, the abscissas ofx andx8 in Cartesian coor-
dinates, satisfyX85X1A. Here, for simplicity, we assume
that K@0, so that a state point perturbed fromg rapidly
converges back to it. Thus, following the perturbation, t
state point moves instantaneously fromx8 to a pointy on the
limit cycle @Fig. 1~a!, left#. The following equation gives the
relation between the time-phases ofx andy(x,yPg):

t~y!5F@t~x!#[g21
„C$g@t~x!#%) ~mod 1…,

where

C~u!5
1

2p
tan21

sin 2pu

A1cos 2pu
~2!

and

u5g~t![E
0

t(x) d

ds
u@x~s!#ds.

The graph ofF is the phase transition curve~PTC! @Fig.
1~a!, right# of AMRIC. It represents the phase shift due to
single isolated pulse stimulus@7,12#.

An important characteristic of the PTC of the AMRIC
that for t within @0.039,0.97), it can be approximated by
straight line with a positive slopea smaller than 1, for ex-
ample,a.0.677 forA520.5. The ‘‘linear’’ part of the PTC
is approximated as follows:

F~t!5at1
~12a!

2
for tP@0.039,0.97!. ~3!

The PTC can be used to describe the response of
pacemaker neuron models to an arbitrary sequence of i
tical pulses. Indeed, fromtn , the time-phase of the stat
e

e

he
n-

point (xPg) before thenth pulse stimulus, we can obtai
tn11, the time-phase just before then11th pulse stimulus,
according to

tn115@F~tn!1I n# ~mod 1![ f ~tn ,I n!, ~4!

where I n is the time interval between thenth and n11th
pulses@7#. We refer to the mapf (•,I ):S1→S1 as PTC-I to
indicate its dependence on the input interval. For any a
trary sequence of pulses, and for any initial time-phaset1,
we can inductively compute the successive time-phases$tn%
using Eq. ~4!. For instance, t25F(t1)1I 1 ,t3
5F@F(t1)I 1#1I 2 , . . . . When k,F(tn)1I n<k11, ex-
actly k output spikes occur between thenth andn11th input
pulses@13#. Thus, for any initial time-phase, and sequence
input intervals$I n%, the PTC can be used to compute t
response of the AMRIC without solving the system of d
ferential equations@Eq. ~1!#. We use this method to repro
duce and to analyze the response of the chain of oscillato
Sec. III.

For periodic pulse trains (I 15I 25•••5I n5I 5constant),
the sequence of time-phases$tn% becomestn5 f (tn21 ,I )
5 f 2(tn22 ,I )5 f n21(t1 ,I ), where t1 is the initial time-
phase. If the sequence$tn% satisfiestp115t1 andtnÞt1,2
<n<p, $tn% is called a periodic orbit with periodp. If the
periodic orbit satisfiesu] f I

p/]t(t0)u5) j 51
p u] f I /]t(t j )u,1,

it is stable.r5 lim
M→`

(n51
M Dn /M , where Dn5F(tn)1I

2tn , is called rotation number.
If the period of$tn% is p, the rotation numberr becomes

q/p with adequateq (p andq are not always incommensu
rate!. We call this responsep:q phase locking. In this way
fixed points~periodic orbits with period one! and periodic
orbits of the PTC-I correspond to different periodic dis
charges, and vice-versa. This relation between the geom
cal properties of the PTC and the discharge pattern of
pacemaker neuron models plays an important role in
analysis.

C. The chain model

The chain model consists of unidirectionally coupl
units @Fig. 1~b!#. The units are AMRICs and the coupling

FIG. 1. ~a! Left column: the trajectory of the AMRIC in the
phase plane; abscissa and ordinate: state variablesX andY, respec-
tively. Middle column: corresponding membrane potential wa
form; abscissa: time in arbitrary unit, ordinate:X, the membrane
potential of AMRIC in arbitrary unit. Right column: phase trans
tion curve ~PTC!. ~b! Schematic diagram of a chain of pulse
coupled oscillators.
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are pulsatile. The input to the chain is the pulse train
ceived by the first unit, while the input pulse train of thek
11th unit is the output spike train of thekth unit.

In the absence of any external input, the first unit gen
ates a pacemaker train with natural periodN51. Thus, the
second unit is stimulated by a periodic pulse train with p
riod 1. When the input interpulse interval is 1, the AMRI
exhibits 1:1 phase locking. Thus, in the steady state regi
the second unit also discharges regularly with a period o
@Fig. 2~a!#. In this way, all units produce output spike train
with period 1 in the steady state. In the 1:1 phase lock
regime, the PTC of the AMRIC has a stable fixed pointt*
50.0386@Fig. 1~a!, right#; that is, it receives input pulses a
a fixed time-phaset* 50.0386. We choose this state as t
initial condition of the chain model.

To calculate the response of the chain model, we h
used two methods. One is a numerical simulation sche
that takes advantage of the analytical expression of the s
tion to Eq.~1! ~Appendix V!, the other one is by iterating th
PTC according to Eq.~4!. We have obtained quantitativ
agreement between the two methods. The figures illust
the results obtained with the second method. The co
sponding figures computed with the first method are not p
sented because they are visually indistinguishable from th
obtained with the second method.

III. RESPONSE TO INPUT TRAINS

In this section, we examine successively the respons
the chain model to pacemaker and noisy pulse trains,
clarify the dependence of the output of the chain on the v
ability of the input intervals. Finally, we discuss the relati
between the behavior of the chain model and the geomet
aspect of the PTC.

A. Response to pacemaker input

We investigate the response of the chain model to pa
maker pulse trains. Figure 2~a! shows the steady state mea
output rate of the chain model as a function of the me
input rate. This figure includes the response of the first, s
ond, third, 50th, and 100th units to a pacemaker pulse t
delivered to the first unit.

The plot of mean output rate of the first unit~i.e., one
single unit!, though globally decreasing, is interrupted
wide ranges of input rate where an increase in inhibit
input pulse rate accelerates the pacemaker rate~paradoxical
acceleration! @Fig. 2~a!#. In this region,p input intervals cor-
respond toq output interspike intervals with fixed time
phases, namely,p:q phase locking occurs. To consider th
relation between mean input rate and mean output rat
p:q phase locking, we denote byr̄ in51/I the input rate and
by r̄ out5q/(T11T21•••1Tq) the mean output rate, wher
$T1 ,T2 , . . . ,Tq% are the successive output intervals inp:q
phase locking region. FromT11T21•••1Tq5pI, we ob-
tain

r̄ out5
p

q
r̄ in . ~5!

Thus, a line with slopep/q appears in thep:q phase locking
region accounting for paradoxical acceleration.
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FIG. 2. Response of chain of oscillators to pacemaker input
using PTC.~a! Mean firing rate of the chain of oscillators, as
function of mean input rate. Abscissa and ordinate: mean input
in spikes per unit time and mean output rate in spikes per unit ti
respectively.~b! Standard deviation of the chain of oscillators, as
function of mean input rate. Abscissas: mean input rate in sp
per unit time; ordinates: standard deviation of interspike interva
arbitrary units. Response of simulated chain of oscillators a
shows the same response.



u
ay
-
n
ee
in
nd
in

b
te
re

va
ct
l o
f
a

th
e
te
nd
le
ar

un
ia

-
ne
ls

in
lo
eb
on
e

th
n
th

an
re

te
it

is
n

n
n
u
e

as
n

he

f the
tion
ard
he

ain
1
e
gle
for

of
ime;

to

unit
in

d

PRE 60 4567RATE CODING IN A CHAIN OF PULSE-COUPLED . . .
Figure 2~a! shows that no matter what values the inp
rate takes, the mean output rate of the first unit is alw
bounded: 0.0< r̄ out<1.0. This, in turn, implies that the sec
ond unit receives an input train with mean rate within 0 a
1. Therefore, the mean output rate of this unit varies betw
0.77< r̄ out<1.0. This range corresponds to 1:1 phase lock
region. Similarly, the mean output rate of all units beyo
the second one also varies within the 1:1 phase lock
range.

Thus, the overall behavior of the chain is determined
the way an AMRIC responds to an input train with a ra
within the 1:1 phase locking range. We have previously
ported that within this range, the relation 1,F(tn)1I n<2
holds except for special values of time phase and inter
@13#. This implies that to one input pulse corresponds exa
one output pulse, i.e., there is 1:1 alternation. At the leve
the chain, this property means that the mean output rate o
units is the same as the input rate. This phenomenon
counts for the fact that units 2, 3, 50, and 100 have all
same output rate in Fig. 2~a!, and that this common valu
matches the discharge rate of the first unit for low input ra
The difference between the firing rate of the first unit a
that of the others appears when the input rate increases,
ing to discharge rates at the level of the first unit that
below the 1:1 locking~or equivalently 1:1 alternation range!.
Eventually, when the input rate becomes too large (r in
.3.32), the first unit remains quiescent, and the second
acts like the entry to the chain which stabilizes into its init
pattern with all units firing at the natural period.

While the upper panel in Fig. 2~a! represented the aver
aged response of the units within the chain, the lower pa
show how the variability of the interdischarge interva
changes across the chain. The five panels in Fig. 2~b! show,
from top to bottom, the standard deviation of interspike
tervals of the first, second, third, 50th, and 100th units. G
bally, the standard deviation decreases unit by unit ther
indicating that the firing becomes more pacemakerlike as
moves along the chain. Since the first unit generates a p
odic discharge with a constant interval inp:1 phase locking
regions, its standard deviation is zero in this regime. For
range of input rates, the standard deviation of the other u
is also zero. This is because the output spike train from
first unit is a pacemaker spike train and such trains are tr
mitted unaltered when they are in the 1:1 phase locking
gion.

The standard deviation is also zero for all units whenr̄ in
.3.32 because the first unit is silent in this case. Outside
the above two conditions, the standard deviation of the in
vals is different from 0. Notably, even when the first un
generates a periodic spike train in thep:q phase locking
region, with q>2, the corresponding standard deviation
not zero because the intervals form a repetitive seque
composed ofq distinct values.

B. Response to stochastic input

When all interpulse intervals are independent a
identically distributed with probability density functio
r exp(2rx), we refer to the pulse train as a Poisson inp
because the timing of the events follows a Poisson proc
@14#. Moreover, if we pick up one pulse everyk input pulses
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from a Poisson input, the resulting train follows thekth order
g process@14#. We call this inputg input. Ask increases, the
mean and standard deviation of input intervals increasek
and Ak, respectively. Hence, the coefficient of variatio
~CV!, namely, the ratio of the standard deviation to t
mean, decreases as 1/Ak. In other words, the first orderg
process is a Poisson process and increasing the order o
process leads to more regular input trains. Thus, stimula
with g processes with different orders provides a stand
method to analyze the influence of input variability on t
behavior of the chain.

The three panels in Fig. 3~a! show the mean input rate
versus the mean output rate of the 100th unit in a ch
stimulated byg processes with CVs of 0.01, 0.1, and
~from top to bottom!. The range of the output rate of th
chain model is in the 1:1 phase locking region of a sin
unit since the mean output rate is restricted to this range

FIG. 3. Response of chain of oscillators tog input by using
PTC.~a! Mean firing rate of the chain of oscillators, as a function
mean input rate. Abscissas: mean input rate in spikes per unit t
ordinates: mean output rate in spikes per unit time. From top
bottom, the CV ofg input are 0.01,0.1,1.~b! Standard deviation of
chain of oscillators. Abscissa: mean input rate in spikes per
time; ordinate: standard deviation of output inter-spike interval
arbitrary unit. The CV ofg input is 0.1. Response of simulate
chain of oscillators produces the same response.
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all units after the first one. Similar to the case of pacema
inputs, high input rates effectively prevent the first unit fro
firing, thereby leading to a period 1 firing in all subseque
units. In the case of stochastic inputs this phenomenon
curs at higher mean rates than for pacemaker forcing. T
shifting is due to the variability of the input intervals.

The preceding section established how for pacemake
puts, the response of a long chain varies with the input
riod. When the input has some variability, the locking r
gions, characterized by the positive slopes in the figu
representing the relation between input and output rates,
gressively disappear as the CV is increased. The smalle
size of the locking region, the smaller the variability requir
to smooth out the corresponding positive slope@Fig. 3~a!#.
This phenomenon implies that the mean output rate of
chain depends not only on the mean input rate but also on
input variability. This dependence is consistent with previo
studies that examined the response of single units@10,11#.

The main difference between the response of the ch
and that of a single unit appears at the level of the variab
of the interspike intervals. This is shown in Fig. 3~b! where
the standard deviations of the interdischarge intervals
units one, two, three, fifty, and one hundred are represen
For the first unit, the standard deviation presents valley
regions of p:1 ~noisy! phase lockings and humps inp:q
phase locking withq>2. Similarly, the standard deviation
of the other units are smoothed versions of the ones obta
with pacemaker forcing@lower panels in Fig. 2~b!#. Further-
more, for the 50th and 100th units, they take on larger val
when the input is stochastic. Nevertheless, in the same
as for pacemaker inputs, the standard deviation decre
along the chain, thereby indicating that the discharge tra
of the units become more regular and pacemaker like al
the chain.

This phenomenon is further illustrated in Fig. 4, whi
shows the time evolution of input interpulse intervals a
output inter-spike intervals of the first, second, third, 50
and 100th units. Figures 4~a! and 4~b! show, respectively, the
responses to a pacemaker within the 1:2 phase locking re
and to ag input with mean rate equal to 1 and CV of 0.
The abscissas are the order of interval and the ordinates
the interpulse or interspike intervals. Due to the input-out
relation of a single AMRIC, the output intervals of the fir
unit are bounded within 0<Tn<1.30. Those of the subse
quent units are further restricted to 1.0<Tn<1.30, which
corresponds to the 1:1 locking region. For both pacema
and stochastic inputs, the higher order units have a ma
lower variability than the first one. For the periodic inpu
units two and three display already close to pacemaker
charges, while for the stochastic input, the decrease in
variability is slower as some low level fluctuations still a
pear in the output train of unit 100. Figure 5 shows the p
gressive monotonic decrease of the standard deviation a
unit number increases. Thus, in a long chain the output
sembles pacemaker firing, with intervals displaying lit
variability around their mean value. Therefore, the two ch
acteristics of the input, namely, its mean rate and CV,
both encoded in the mean output rate.

When the input rate varies within the 1:1 locking regio
our numerical results show that the mean output rate tend
the mean input rate, whether the input is pacemaker or
r
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chastic. This remarkable averaging effect can serve as
basis for the computation of the mean output rate of
chain from the response of a single unit. Indeed, as poin
out previously, the interdischarge intervals of the second u
of the chain lie within the 1:1 locking range. This proper
holds for both pacemaker and stochastic inputs. Con
quently, the chain composed of units three and beyond
stimulated by an input train whose rate is within the 1
locking region. This, in turn, implies that~i! the output of a
long chain is close to pacemaker spike train with intersp

FIG. 4. Basic plot of chain of oscillators.~a! Response of chain
of oscillators to pacemaker input by PTC.~b!. Response of chain o
oscillators tog input by PTC. Abscissas: order of interpulse
interspike interval in arbitrary units; ordinates: interpulse or int
spike interval in arbitrary units. The rate of pacemaker input is
in ~a!. The mean rate ofg input is 1.0 and the CV ofg input is 0.1
in ~b!.
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intervals displaying some small variability around their me
value, and, furthermore, that~ii ! this mean value is given by
the mean interspike interval of the second unit within t
chain.

Figure 4~a! illustrates this phenomenon. The output of t
first unit is formed by two intervalsT1 andT2, both of which
lie within the 1:1 locking region. The response of the cha
at the level of the 100th unit is a pacemaker firing w
period (T11T2)/2. A similar regularization effect take
place along the chain when the input is stochastic, as il
trated in Fig. 4~b!. Such averaging effects that take pla
along the chain constitute the main characteristic of its inp
output response. The next paragraph shows how the prog
sive reduction of the variability of the intervals can be a
counted for by the geometrical properties of the PTC.

To understand the mechanisms underlying the avera
effect, we consider the response of a single unit to an in
pulse train such that all the input intervals fall within the 1
phase locking region. Our previous study indicates that
such inputs, the unit displays in general 1:1 alternation,
is, the AMRIC generates exactly one discharge for ev
input pulse@13#. Thus, thenth output interspike interval
denoted byTn , is given by

Tn5I n1tn2tn11 , ~6!

where tn and tn11 are the time phases of thenth and (n
11)th input pulses. Furthermore, in this regime, the d
charge phases occur mainly in the ‘‘linear’’ part of the PT
so that we have

tn115atn1b1I n mod~1!. ~7!

Taking ensemble averages over input trains, we obtain

t̄n115at̄n1b1 Ī mod~1!, ~8!

wheret̄k and Ī represent averages of the phase and the in
intervals. Lettingn→`, we havet̄5at̄1b1 Ī , where t̄ is
the steady state average discharge phase. This final ex
sion yields t̄5 Ī 1b/12a and T̄5 Ī , where T̄ is the steady
state average output interval. The above relation confi
that the output rate coincides with the input rate.

Using Eqs.~6! and ~7!, we obtain the following relation:

Tn5~12a!tn2b. ~9!

From this relation we obtain that

V~Tn!5~12a!2V~tn!, ~10!

whereV(Tn) andV(tn) represent the variances of theTn and
tn . Letting n→`, we find the following relation for the
steady state variances:V(T)5(12a)2V(t). From Eq.~7!, it
can be seen thatV(t)5V(I )/(12a2).

Thus, finally we obtain the following relation between th
variances of the input and output intervals:

V~T!5aV~ I !, ~11!

wherea5(12a)2/12a2. Sincea,1, we havea,1, which
implies that the interval variance of the output is smaller th
that of the input.
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Equation~11! shows the decrease in the variance acros
single unit. In a chain of lengthk, we have that the mean
output interspike interval coincides with the mean input
terpulse interval, while the variances satisfyV(T)5akV(I ).
Thus the output variance decreases to zero with the lengt
the chain. This reduction of the variability of the interva
accounts for the averaging effect observed across the ch

IV. DISCUSSION

This work examined how the sensitivity of single units
input patterns is reflected on the response of the chain
oscillators. We analyzed the response of the chain to pa
maker input and stochastic input. The investigation revea
that the response of the chain depends on the input rate
coefficient of variation. However, the latter does not hav
significant effect when the input rate remains within the 1
phase locking range. Indeed, in this regime, the output in
spike intervals tend to the average of input interpulse in
vals in a long chain of oscillators. This property implies th
the response of the chain is completely determined by
input rate. In this sense, the response of a long chain c
trasts with that of the first unit whose output depends both
the input rate and the input pattern. One consequence of
behavior of a long chain, with potential functional implica
tion, is that when the input rate is confined to the 1:1 locki
regime, the chain model performs rate coding~i.e., the infor-
mation carrier is mean rate!. More precisely, the mean outpu
rate is equal to the mean input rate. We analyzed the me
nism underlying this averaging effect in terms of the ge
metrical properties of the PTC. This description of the
sponse of a long chain to an input with rate within the 1
locking range opened the way for the analysis of the
sponse to other input signals. This extension hinged upon
observation that for a broad range of input intervals,
interdischarge intervals of a single unit lay within the 1
locking range. This, in turn, implies that the output of a lo
chain consists of a~close to! pacemaker discharge train wit
a period equal to the mean output rate of the first unit. Th
for a broad class of inputs, the response of the chain is c
pletely characterized by the mean discharge rate of the
unit. This quantity, in turn, depends on the organization
the locking regions in response to pacemaker inputs. In
way, we established a link between the response charact
tics of a single unit and that of a long chain. The similar

FIG. 5. Standard deviation of output interspike interval in ea
unit of chain of oscillators by using PTC. Abscissa: unit numb
ordinate: standard deviation of output interspike interval in arbitr
unit. The mean input rate and the CV ofg input are 1.0 and 0.1,
respectively. Standard deviation calculated by a simulation of ch
of oscillators shows the same result.
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between the response of the pacemaker model, namely
AMRIC and experimental recordings of living neuron
@1,11# suggests that our results could hold for chains of pa
maker neurons.

V. SIMULATION METHOD

To get the output sequence, we use special simula
method as follows.

Let r (t0),u(t0) be the initial values of AMRIC att5t0.
If there is no stimulus, the next output spike occurs
t5t01N2t(t0), whereN2t(t0) is necessary time to th
next spike from the initial condition without input. Let u
re
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consider the case that the first stimulus arrives before
next spike. Set the input pulse arrives att8 and r (t82) and
u(t 82) are the variables just before the stimulus, andr (t81)
andu(t81) are the variables just after the stimulus. When t
stimulus arrives att8, the state point moves to the directio
of X axis by the amount of amplitude of the stimulusA. Then
we getr (t81) andu(t81). From t(t81)5g21@u(t81)#, the
next spike occurs att5N2t(t81). If the AMRIC get other
stimulus before the timet, we repeat the above procedure.
there is no other stimulus, we get the occurrence time of n
output spike. In this way, we can get the sequence of ou
spikes.
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